

Warsaw, 22 - 23 October 2025

II MIĘDZYNARODOWA KONFERENCJA

Nowoczesne nawierzchnie drogowe - recykling i dekarbonizacja

II INTERNATIONAL CONFERENCE

Modern road pavements - recycling and decarbonization

EFFECT OF FOAMED ASPHALT ON THE PROPERTIES OF THE ASPHALT MIXTURE WITH RECLAIMED ASPHAT PAVEMENT

MATEUSZ M. IWAŃSKI
PIOTR RAMIĄCZEK
MAŁGORZATA DURLEJ
KAROLINA JANUS
KRZYSZTOF MACIEJEWSKI
SZYMON MALINOWSKI
RENATA HORODECKA

Presentation Program

Characteristics of Foamed Asphalt

Asphalt Mixture Testing

Rejuvenation of Reclaimed Asphalt from RAP

Asphalt Mixture Properties

Construction of the Experimental Section

Conclusions

Characteristics of Foamed Asphalt

Fig.1. Laboratory foamed asphalt production device

Foaming parameters:

- maximum expansion ER,
- bitumen foam half-life $t_{1/2}$ (HL)[s].

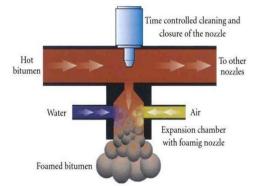
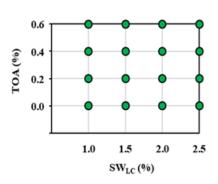



Fig.2. Asphalt foaming mechanism*

Fig.3. Experimental plan for bitumen modification

Bitumen modifiers

SW_{1C} – Synthetic wax with reduced carbon footprint

TOA – Tall Oil Amidopolyamines

Table 1. Essential characteristics of WS_{LC} synthetic wax

Property	Unit	Value
Colour	-	white, yellowish
Flash point	°C	285
Solidification temperature	°C	95
Density at 25°C	Mg/m³	0.9
Molecular weight	g/mol	approx. 1000

Table 2. Essential characteristics TOA

Property	Unit	Value
Appearance	-	Brown liquid
Density at 20°C	Mg/m ³	0.88-0.98
Dynamic viscosity at 20°C	m·Ps	3000
Solidification temperature	°C	<0
Flash point	°C	>218

Warsaw, 22 - 23 October 2025

Table 3. Performance of foamed asphalt with optimal amount of SW_{IC} and TOA

Characteristics	Unit	Value	Requirements	
Maximum expansion of ER	-	16.6	Wirtgen	
Half-life of HL	S	14.4	Wirtgen]	
Penetration at 25°C	0.1 mm	49.4	PN-EN 1426	
Softening temperature	°C	56.6	PN-EN 1427	
Modulus of rigidity Sm at temp:				
- 10°C	MPa	105		
- 16°C	IVIPa	204		
- 22°C		421	PN-EN 14771	
Creep rate m _{value}			PIN-CIN 14//1	
-10°C		0.327		
-16°C	_	0.290		
-22°C		0.276		

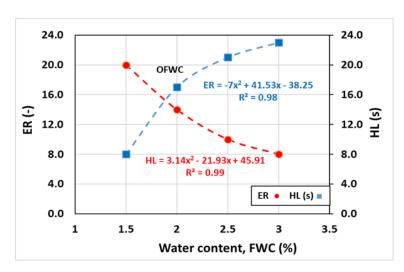


Fig. 4. Foaming characteristics of asphalt 50/70 with optimal amount of SW_{LC} and TOA (1.5% + 0.4%)

AC 16W asphalt mixture

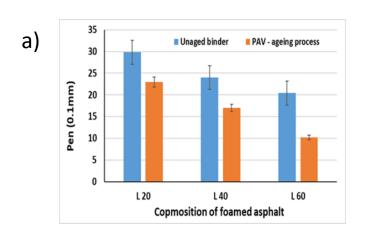
Table 4. Properties of the AC 16W asphalt mixture

Properties	Unit	Category	Value	Standard
Air voids content in MMA, V _m	% (v/v)	V _{min4.0} V _{max7.0}	5.2	PN-EN 12697-8
Water resistance, ITSR	%	ITSR ₈₀	92.8	PN-EN 12697-12 Annex 1 to WT-2 p.1.
Resistance to permanent deformation: - WTS _{AIR} - PRD _{AIR}	mm/10 ³ cycles %	WTS _{AIR 0.15} PRD _{AIR 7.0}	0.108 6.2	PN-EN 12697-22

Fig. 5. Design AC 16W asphalt mixtures without and with RAP (20%, 40%,60%)

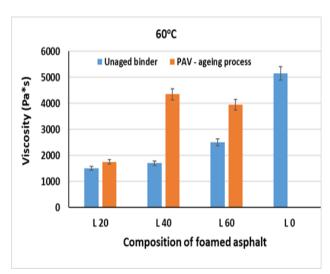
Analysis of changes in the following properties of the recovered asphalt:

- penetration at 25°C according to EN 1426 (Pen),
- softening temperature in accordance with EN 1427 ($T_{R\&B}$),
- viscosity at 60°C, 90°C and 135°C according to EN 13302 (η),
- Blanc curves according to EN 14770,


The test programme for the asphalt mixture with RAP:

- air void content Va (%) according to EN12697-8,
- water sensitivity ITSR (%) according to EN 12697-12, Annex 1 to WT-2 p.1,
- resistance to permanent deformation according to EN 12697:26:
 - WTS_{AIR} (mm/10³ cycles),
 - PRD_{AIR} (%).
 - ITS indirect tensile strength according to EN 12697-23, at -10°C, 0°C, +10°C and +20°C.

Due to the fact that 20%, 40% and 60% of the RAP was used in the asphalt mixtures, so the composition of the binder in the asphalt mixtures was as follows:


- asphalt mixtures with 20% RAP: 3.6% foamed asphalt +0.9% recycled asphalt (L 20),
- asphalt mixtures with 40% RAP: 2.6% foamed asphalt +1.9% recycled asphalt (L 40),
- asphalt mixtures with 60% RAP: 1.7% foamed asphalt +2.8% recycled asphalt (L 60).

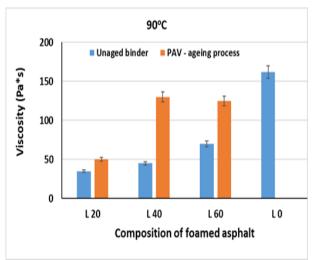


Fig. 6. Influence of foamed asphalt on penetration and softening point of binder with asphalt recovered from RAP; (a) penetration at 25°C, (b) softening point

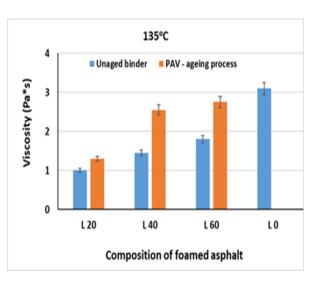


Fig. 7. Results of dynamic viscosity tests of the analysed asphalt binders at: a) 60°C, b) 90°C, c) 135°C

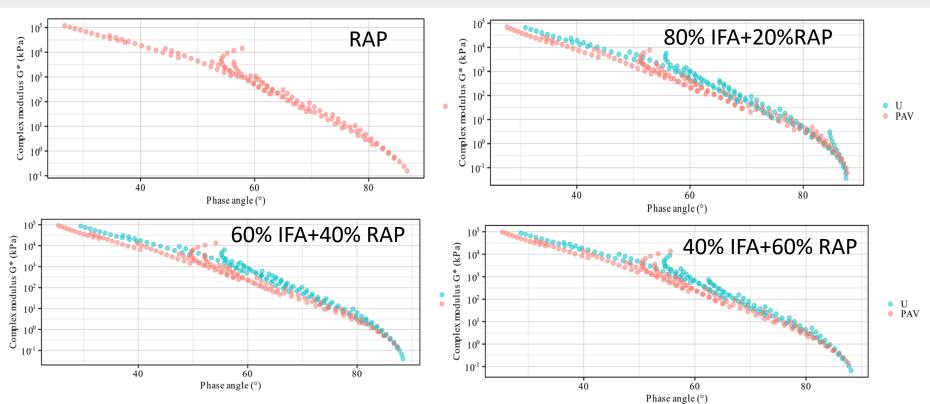
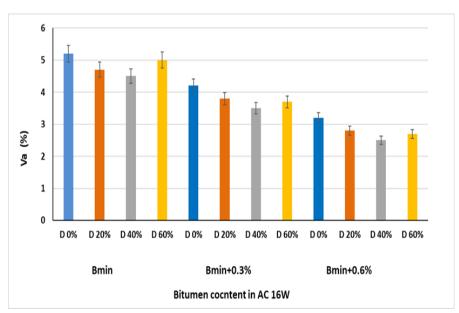
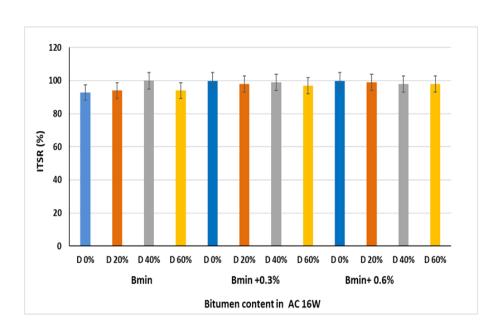
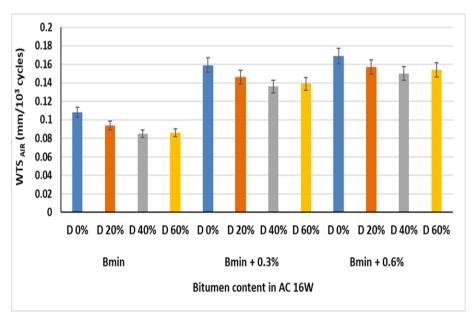



Fig. 8. Black curves for an asphalt binder of composition: innovative foamed bitumen (IFA)


50/70 and binder recovered from RAP

Warsaw, 22 - 23 October 2025


Fig. 9. Influence of the binder on the *Va* in the asphalt mixture in terms of the quantity of RAP

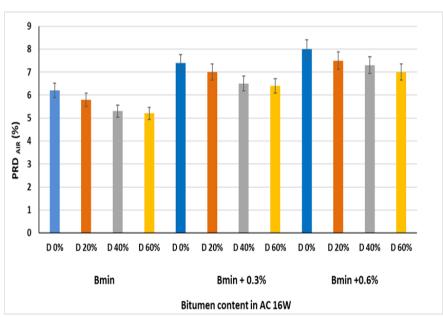
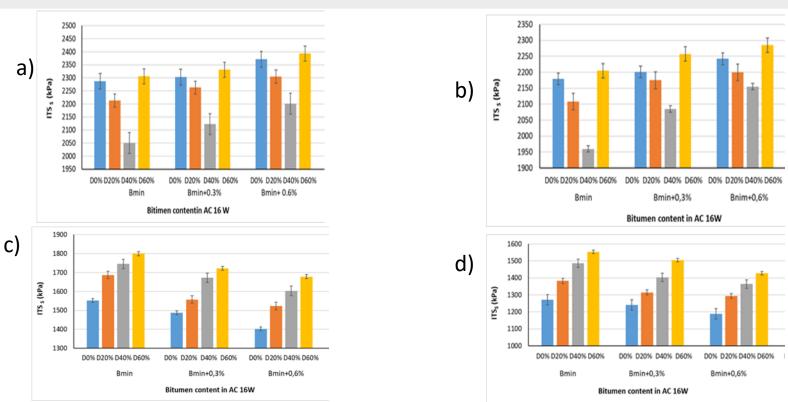
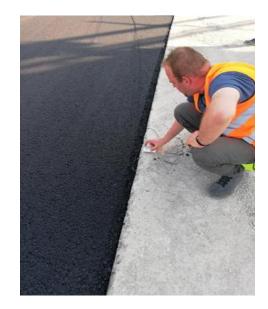


Fig. 10. Influence of the binder on the effect of *ITSR* water in the asphalt mixture in terms of the amount of RAP

Warsaw, 22 - 23 October 2025

Fig. 11. Influence of the binder on the resistance to permanent deformation of WTS_{AIR} and PRD_{AIR} in an asphalt mixture in terms of the amount of RAP




Fig. 12. Indirect tensile strength ITSs of the asphalt mixture with RAP at; a) -10°C; b) 0°C; c) +10°C; d)+20°C

Construction of an experimental section of the road

Fig.13. Built-in AC 16W

Fig.14. Measurement of the compaction temperature 100°C

Fig.15. Collection of asphalt mixture for testing

Warsaw, 22 - 23 October 2025

Conclusions

On the basis of the studies carried out on the effect of foamed asphalt with the addition of 1.5% synthetic wax and 0.4% tall oil amidopolyamine on the properties of the AC 16W asphalt mixture with RAP, the following conclusions can be drawn:

- 1. Innovative foamed asphalt has a rejuvenating effect on the properties of asphalt recovered from RAP. The intensity of its impact depends on the amount of bitumen recovered and decreases as its proportion in the composed binder increases. The most favourable binder composition contains 60% innovative foamed asphalt and 40% recycled asphalt,
- 2. The developed asphalt mixture containing RAP and an innovative binder composition behaves in the same way when increasing the binder quantity above Bmin as a traditional hot asphalt mixture,
- 3. The innovative foamed asphalt combined with asphalt recovered from RAP at Bmin yields more favourable basic physical and mechanical properties for the asphalt mixture than for the traditional asphalt mixture,
- 4. The use of innovative foamed asphalt ensures that the required parameters of the asphalt mixture with RAP are achieved at the reduced compaction temperature of 100°C.

The positive results obtained for the basic physico-mechanical properties of the asphalt mixture with.

The positive results obtained for the basic physico-mechanical properties of the asphalt mixture with RAP and innovative foamed asphalt indicate the need for further research into its complex rheological parameters. Obtaining a comprehensive study will indicate the potential feasibility of implementing this type of asphalt mixture into road practice

Acknowledgements

The authors would like to thank the National Centre for Research and Development for funding the research under the LIDER XIII grant project No. 0068/L-13/2022.

Dr. Mateusz M. IWAŃSKI
Faculty of Civil Engineering and Architecture
Kielce University of Technology
Al. Tysiąclecia Państwa Polskiego 7
25-314 Kielce, Poland
E-mail: matiwanski@tu.kielce.pl, Phone: +48 505 797 847

I invite you to cooperate

Thank you very much for your attention

mrp25.ibdim.edu.pl